Date

CHAPTER Prime Trinomials of the Form $x^2 + bx + c$

In Lesson 9.5, you factored trinomials of the form $x^2 + bx + c$. Sometimes trinomials of this type will not be factorable. Non-factorable trinomials are called **prime trinomials**.

KEY CONCEPT

Prime Trinomials

A trinomial of the form $x^2 + bx + c$ is prime if there are no integer factors of *c* whose sum equals *b*.

EXAMPLE Identify prime trinomials of the form

$x^2 + bx + c$

Factor the trinomial $x^2 + 3x - 6$, if possible.

Solution:

Find two factors of -6 whose sum is 3 by checking all possibilities.

Factors of -6	Sum of Factors
1, -6	1 + (-6) = -5
-1,6	-1 + 6 = 5
2, -3	2 + (-3) = -1
-2, 3	-2 + 3 = 1

Since no two factors of -6 sum to 3, the trinomial is prime.

Note it can be concluded that a trinomial of the form $x^2 + bx + c$ is prime only after all possible factor combinations of *c* have been tried and none sum to *b*.

Practice

Show that the trinomial is prime.

1. $b^2 + 3b + 4$	2. $d^2 + 8d + 9$	3. $x^2 - 6x + 4$
4. $p^2 + 7p - 12$	5. $r^2 + 15r - 28$	6. $q^2 - 12q + 16$
7. $t^2 - 8t - 15$	8. $m^2 - 10m - 20$	9. $k^2 + 28k + 45$

Factor the trinomial, if possible. Otherwise write prime.

10. $y^2 + 15y + 24$	11. $s^2 + 11s - 40$	12. $w^2 - 18w + 36$
13. $z^2 - 12z + 27$	14. $u^2 + 26u - 25$	15. $g^2 - 11g - 42$
16. $q^2 + 20q - 100$	17. $h^2 - 15h - 76$	18. $x^2 - 30x + 64$

Pre-AP Copymasters