\qquad
\qquad

In Lesson 9.5, you factored trinomials of the form $x^{2}+b x+c$. Sometimes trinomials of this type will not be factorable. Non-factorable trinomials are called prime trinomials.

KEY CONCEPT

Prime Trinomials

A trinomial of the form $x^{2}+b x+c$ is prime if there are no integer factors of c whose sum equals b.

EXAMPLE Identify prime trinomials of the form

$$
x^{2}+b x+c
$$

Factor the trinomial $x^{2}+3 x-6$, if possible.

Solution:

Find two factors of -6 whose sum is 3 by checking all possibilities.

Factors of $-\mathbf{6}$	Sum of Factors
$1,-6$	$1+(-6)=-5$
$-1,6$	$-1+6=5$
$2,-3$	$2+(-3)=-1$
$-2,3$	$-2+3=1$

Since no two factors of -6 sum to 3 , the trinomial is prime.
Note it can be concluded that a trinomial of the form $x^{2}+b x+c$ is prime only after all possible factor combinations of c have been tried and none sum to b.

Practice

Show that the trinomial is prime.

1. $b^{2}+3 b+4$
2. $d^{2}+8 d+9$
3. $x^{2}-6 x+4$
4. $p^{2}+7 p-12$
5. $r^{2}+15 r-28$
6. $q^{2}-12 q+16$
7. $t^{2}-8 t-15$
8. $m^{2}-10 m-20$
9. $k^{2}+28 k+45$

Factor the trinomial, if possible. Otherwise write prime.
10. $y^{2}+15 y+24$
11. $s^{2}+11 s-40$
12. $w^{2}-18 w+36$
13. $z^{2}-12 z+27$
14. $u^{2}+26 u-25$
15. $g^{2}-11 g-42$
16. $q^{2}+20 q-100$
17. $h^{2}-15 h-76$
18. $x^{2}-30 x+64$

